PO Box 1751250 Victoria SquareAdelaide SA 5001Adelaide SA 5000

Email: producttesting@awgc.com.au

Internet: www.awqc.com.au

FINAL REPORT

Report ID : 311761

Report Information

Submitting Organisation :	00109358 : Parchem Construction Supplies Pty Ltd
Account :	130335 : Parchem Construction Supplies Pty Ltd
AWQC Reference :	130335-2020-CSR-16 : Prod Test: Fosroc Renderoc HB70
Project Reference :	PT-4554
Product Designation :	Fosroc Renderoc HB70
Composition of Product :	Cementitious.
Product Manufacturer :	Parchem Construction Supplies, Wyong, NSW, AUSTRALIA.
Use of Product :	In-Line/Cementitious Repair Mortar.
Sample Selection:	As provided by the submitting organisation.
Testing Requested :	AS/NZS 4020 TESTING OF PRODUCTS FOR USE IN CONTACT WITH DRINKING WATER
Product Type :	Composite
Samples :	Samples were prepared and controlled as described in Appendix A of AS/NZS 4020:2018
Extracts :	Extracts were prepared as described in Appendix/Clause C, D, E, F, G, H, 6.8.
Project Completion Date :	18-Jun-2021
Project Comment :	Product sample received in the week 15-Feb-2021; testing commenced 29-Mar-2021.

PLEASE NOTE THAT THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

THE RESULTS STATED IN THIS REPORT RELATE TO THE SAMPLE OF THE PRODUCT SUBMITTED FOR TESTING. ANY CHANGES IN THE MATERIAL FORMULATION, PROCESS OF MANUFACTURE, THE METHOD OF APPLICATION, OR THE SURFACE AREA-TO-VOLUME RATIO IN THE END USE, COULD AFFECT THE SUITABILITY OF THE PRODUCT FOR USE IN CONTACT WITH DRINKING WATER

M Marion.

Michael Glasson APPROVED SIGNATORY

Email: producttesting@awqc.com.au

AWQC

Internet: www.awqc.com.au

FINAL REPORT

Report ID : 311761

Summary of Results

APPENDIX/CLAUSE	RESULTS
C – Taste	Passed at an exposure of 15000 mm² per Litre.
D – Appearance	Passed at an exposure of 15000 mm ² per Litre.
E – Growth of Aquatic Micro-organisms	Passed at an exposure of 15000 mm ² per Litre.
F – Cytotoxic Activity	Passed at an exposure of 15000 mm ² per Litre.
G – Mutagenic Activity	Passed at an exposure of 15000 mm ² per Litre.
H – Metals	Passed at an exposure of 15000 mm² per Litre.
6.8 – Organic Compounds	Passed at an exposure of 15000 mm² per Litre.

Test Methods

Test(s) in Appendix	AWQC Test Method	Reference Method
С	T0320-01	AS/NZS 4020:2018
D	TO029-01 & TO018-01	APHA 2120c & APHA 2130b
E	TO014-03	APHA 4500 O G
F	TM-001	AS/NZS 4020:2018
G	TM-002	AS/NZS 4020:2018
Н	TIC-006	EPA 200.8

Organic Test Methods

Test(s) in Clause	Test Method	Reference Method
Clause 6.8	TMZ-M36	USEPA524.2
	EP239	USEPA521
	EP132-LL	USEPA_SW846-8270D
	EP075C	USEPA_SW846-8270D
	EP075ASIM	USEPA_SW846-8270D

Summary Comment :

The compound was applied (to glass slides) and cured for 7 days at 20°C prior to testing (ratio of 200g to 29mL of drinking water). Twenty four sequential soakings performed to obtain a pH < 9.0. In accordance with section A8 (Cementitious Products).

PO Box 1751250 Victoria SquareAdelaide SA 5001Adelaide SA 5000				Tel: 1300 653 366 Fax: 1300 883 171				
Internet: www.awqc FINAL REPORT	.com.au			Email: produc	ttesting@awqc.com.au	' AWC)C	
Report ID :	311761							
CLAUSE 6.2		Taste						
Sample Descript	tion	The sample consis mm x 100 mm and were prepared usin	sted of two co providing a t ng 1000 mL v	pated panels (ea total surface are volumes of pre-c	ch coated to one side) a of approximately 150 conditoning water(AI 12	with dimensions 00 mm²/L. Extra .6).	; 75 icts	
Extraction Temp	erature	20°C ± 2°C.						
Test Method Test Information	I	Taste (Appendix C))					
Scaling Factor		Not applicable.						
Results		Not detected (samp	ple and contr	ols).				
Evaluation		The product passed ² per Litre.	d the require	ments of clause	6.2 when tested at an	exposure of 150)00 mm	
Number of Samp	oles	2.						
Test Comment		The 24 hour extrac	cts were not a	analysed in this	test.			

Jack Contraction

Peter Christopoulos APPROVED SIGNATORY

PO Box 1751 Adelaide SA 5001	250 Victo Adelaide	ria Square SA 5000		Tel: 1300 653 366 Fax: 1300 883 171	
Internet: www.awgo	.com.au		Email: pro	ducttesting@awqc.com.au	
FINAL REPORT	-				AVQC
Report ID :	311761				
CLAUSE 6.3		Appearance			
Sample Descrip	tion	The sample consist mm x 100 mm and were prepared usin	ted of two coated panels providing a total surface g 1000 mL volumes of p	e (each coated to one side) wi e area of approximately 15000 pre-conditoning water(AI 12.6)	th dimensions 75) mm²/L. Extracts).
Extraction Temp	perature	20°C ± 2°C.			
Test Method		Appearance (Apper	ndix D)		
Scaling Factor		Not applicable.			
Results					
			<u>Test (- Blank)</u>	Maximum Allowed	<u>Units</u>
		Colour	1	5	HU
		Turbidity	<0.1	0.5	NTU
Evaluation		The product passed ² per Litre.	d the requirements of cla	ause 6.3 when tested at an ex	posure of 15000 mm
Number of Sam	ples	1.			
Test Comment		Not applicable.			

Andrew Paul Ford

Andrew Ford APPROVED SIGNATORY

PO Box 1751 Adelaide SA 5001	250 Victo Adelaide	oria Square SA 5000	Tel: 1300 653 366 Fax: 1300 883 171		
Internet: www.awg	c.com.au	I	Email: producttesting@awqc.com.au		
FINAL REPOR	г			AVGC	
Report ID :	311761				
CLAUSE 6.4		Growth of Aquatic Micro-o	organisms		
Sample Descrip	otion	The sample consisted of two coa mm x 100 mm and providing a to were prepared using 1000 mL vo	ated panels (each coated to one side) v otal surface area of approximately 1500 olumes of test water.	vith dimensions 75)0 mm²/L. Extracts	
Test Method		Growth of Aquatic Micro-organis	ms (Appendix E)		
Inoculum		The volume of the inoculum was	100 mL		
Scaling Factor		Not applicable.			
Results		Mean Dissolved Oxygen	Control	7.2 mg/L	
		Mean Dissolved Oxygen Differer	nce Positive Reference	4.5 mg/L	
			Negative Reference	0.1 mg/L	
			Test	0.10 mg/L	
Evaluation		The product passed the requiren ² per Litre.	nents of clause 6.4 when tested at an e	exposure of 15000 mm	
Number of Sam	ples	1.			
Test Comment		Not applicable.			

Zlun

Thuy Diep APPROVED SIGNATORY

PO Box 1751 Adelaide SA 5001	250 Victo Adelaide	oria Square ∋ SA 5000	Tel: 1300 653 366 Fax: 1300 883 171	
Internet: www.awgo	c.com.au		Email: producttesting@awqc.com.au	
FINAL REPORT	r			AVVQU
Report ID :	311761			
CLAUSE 6.5		Cytotoxic Activity	у	
Sample Descrip	otion	The sample consisted mm x 100 mm and pr were prepared using	d of two coated panels (each coated to one side) wi roviding a total surface area of approximately 15000 1000 mL volumes of pre-conditoning water(AI 12.6	th dimensions 75) mm²/L. Extracts).
Extraction Tem	perature	20°C ± 2°C.		
Test Method		Cytotoxic Activity (Ap	pendix F)	
Scaling Factor		Not applicable.		
Results		Non-Cytotoxic (samp	le and controls).	
Evaluation		The product passed t ² per Litre.	the requirements of clause 6.5 when tested at an e	posure of 15000 mm
Number of Sam	ples	1.		
Test Comment		The test extracts and subsequently used to zinc sulphate (0.4 mn	l blank extracts were used to prepare nutrient growt grow a cell line (ATCC Number CCL 81) in the ana nol) was used for the positive control in the analysis	h medium and alysis. In addition 3.

Mais 29 25

Mira Maric APPROVED SIGNATORY

PO Box 1751 Adelaide SA 5001	250 Victor Adelaide S	ia Square SA 5000		Tel: 1300 653 366 Fax: 1300 883 171		
Internet: www.awqc FINAL REPORT	c.com.au -			Email: producttestir	ng@awqc.com.au	AWQC
Report ID :	311761					
CLAUSE 6.6		Mutage	nic Activity			
Sample Descrip	tion	The samp mm x 100 were prep	ble consisted of two mm and providing a bared using 1000 mL	coated panels (each coa a total surface area of a _ volumes of pre-condito	ated to one side) with di pproximately 15000 mm oning water(Al 12.6).	imensions 75 n²/L. Extracts
Extraction Temp	perature	20°C ± 2°	°C.			
Test Method		Mutageni	c Activity (Appendix	G)		
Scaling Factor		Not applie	cable.			
Results						
Bacteria Strain Number of Revertants per Plate						
<i>Salmonella typhi</i> Mean ± St	<i>imurium</i> TA98 andard devia	S9 3 - ition	Blank 35, 35, 20 30.0 ± 8.7	Sample Extract 23, 30, 26 26.3 ± 3.5	Positive Controls 3237, 3751, 3787 3591.7 ± 307.7	s <u>NPD (</u> 20μg)
Mean ± St	andard devia	+ ition	29, 26, 29 28.0 ± 1.7	29, 29, 28 28.7 ± 0.6	3089, 3388, 3697 3391.3 ± 304.0	<u>2-AF (</u> 20µg)
<i>Salmonella typhi</i> Mean ± St	<i>imurium</i> TA1(andard devia	02 - Ition	427, 447, 446 440.0 ± 11.3	385, 458, 579 474.0 ± 98.0	4903, 5263, 2855 4340.3 ± 1298.9	<u>Mitomycin C(</u> 10µg)
Mean ± St	andard devia	+ Ition	540, 552, 564 552.0 ± 12.0	584, 534, 452 523.3 ± 66.6	2316, 1756, 2038 2036.7 ± 280.0	
Comments		S9 was use C are spec AF (2-amir	ed as the metabolic a ific positive controls iofluorene) when use	activator. NPD (4-nitro-o for strains TA98 - and T ed in conjunction with St	p-phenylenediamine) an FA102 (- and +) respecti 9 is a positive control fo	d Mitomycin vely, while 2- r TA98+.
Evaluation	-	The produc 2 per Litre.	ot passed the require	ments of clause 6.6 wh	en tested at an exposur	re of 15000 mm
Number of Sam	ples	1.				
Test Comment	-	The differences in the mean number of revertants between the blank and test extracts do not exceed two standard deviations; accordingly there is no evidence of a mutagenic response.				

AC

Peter Christopoulos APPROVED SIGNATORY

PO Box 1751250 Victoria SquareAdelaide SA 5001Adelaide SA 5000

Tel: 1300 653 366 Fax: 1300 883 171

Email: producttesting@awqc.com.au

Internet: www.awgc.com.au

FINAL REPORT

CLAUSE 6.7

Report ID : 311761

Metals

Sample Description Extraction Temperature	The sample consisted of two coated panels (each coated to one side) with dimensions 75 mm x 100 mm and providing a total surface area of approximately 15000 mm ² /L. Extracts were prepared using 1000 mL volumes of pre-conditoning water(AI 12.6). $20^{\circ}C \pm 2^{\circ}C$.
Test Method	Metals (Appendix H)
Scaling Factor	Not applicable.
Method of Analysis	All methods used to determine concentrations of metals are based on those described in the US EPA method 200.8 Determination of Trace elements in Waters and Wastes by Inductively Coupled Plasma - Mass Spectrometry. The methods have been adapted for the instrumentation in use at the Australian Water Quality Centre. Concentration of the metals described in Table 2 of the AS/NZS 4020:2018 are determined as follows: Aluminium, Antimony, Arsenic, Barium, Boron, Cadmium, Chromium, Copper, Iron, Lead,

Aluminium, Antimony, Arsenic, Barium, Boron, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium and Silver by Inductively Coupled Plasma Mass Spectrometry.

Limit of Reporting	Blank	Test 1	Test 2	Max Allowed
mg/L	mg/L	mg/L	mg/L	mg/L
0.001	0.034	0.033	0.038	0.2
0.0005	<0.0005	<0.0005	<0.0005	0.003
0.0003	<0.0003	<0.0003	0.0003	0.01
0.0005	0.0244	0.0234	0.0239	0.7
0.020	0.091	0.077	0.062	1.4
0.0001	<0.0001	<0.0001	<0.0001	0.002
0.0001	0.0002	0.0003	0.0003	0.05
0.0001	0.0696	0.0702	0.0696	2.0
0.0005	0.0081	0.0061	0.0068	0.3
0.0001	0.0004	0.0003	0.0003	0.01
0.0001	0.0025	0.0017	0.0018	0.1
0.00003	<0.00003	<0.00003	<0.00003	0.001
0.0001	0.0002	0.0003	0.0002	0.05
0.0001	0.0007	0.0005	0.0005	0.02
0.0001	<0.0001	<0.0001	<0.0001	0.01
0.00003	<0.00003	<0.00003	<0.00003	0.1
	Limit of Reporting mg/L 0.001 0.0005 0.0003 0.0005 0.020 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Limit of Reporting mg/L mg/L mg/L mg/L mg/L mg/L 0.001 0.034 0.0005 <0.0005 0.0003 0.0003 0.0005 0.0244 0.020 0.091 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.00696 0.0005 0.0081 0.0001 0.0004 0.0001 0.0004 0.0001 0.0002 0.00003 <0.00003 0.0001 0.0002 0.00003 0.0001 0.0002 0.0001 0.0002 0.0001 0.0007 0.0001 0.0007 0.0001 0.0007 0.0001 <0.0001 0.0003 <0.0001 0.0003 <0.0001 0.0007 0.0001 0.0003 <0.00003 <0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0007 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0007 0.0001 0.0003 0.0001 0.0007 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001 0.0007 0.0001 0.0003 0.00003 0.0001 0.0003 0.000003 0.00003 0.000	Limit of Reporting mg/L Blank mg/L Test 1 mg/L 0.001 0.034 0.033 0.0005 <0.0005	Limit of Reporting mg/L Blank mg/L Test 1 mg/L Test 2 mg/L 0.001 0.034 0.033 0.038 0.0005 <0.0005

Evaluation

The product passed the requirements of clause 6.7 when tested at an exposure of 42000 mm ² per Litre.

Number of Samples

Test Comment

1. Not applicable.

2.

Dzung Bui APPROVED SIGNATORY

PO Box 1751 250 Victoria Square Tel: 1300 653 366 Adelaide SA 5001 Adelaide SA 5000 Fax: 1300 883 171 Email: producttesting@awgc.com.au Internet: www.awgc.com.au **FINAL REPORT** Report ID : 311761 **CLAUSE 6.8 Organic Compounds Sample Description** The sample consisted of two coated panels (each coated to one side) with dimensions 75 mm x 100 mm and providing a total surface area of approximately 15000 mm²/L. Extracts were prepared using 1000 mL volumes of pre-conditoning water(AI 12.6). **Extraction Temperature** 20°C ± 2°C. **Test Method** Organic Compounds (Clause 6.8). Max Allowed values are taken from the Australian Drinking Water Guidelines and Drinking-water Standards for New Zealand. Please note, some reported compounds have no guideline value. Not applicable. **Scaling Factor** Results **Organic Compound** Nitrosamines Blank Test Max Allowed µg/L µg/L !External Lab Report No. ES2107842 ES2107842 1-Nitrosopiperidine (NPip) < 0.003 < 0.003 1-Nitrosopyrrolidine (NPyr) < 0.01 < 0.01 Nitrosomorpholine (NMor) < 0.003 < 0.003 N-Nitrosodiethylamine (NDEA) < 0.01 < 0.01 N-Nitrosodimethylamine (NDMA) < 0.003 < 0.003 0.1 µg/L N-Nitrosodi-n-propylamine (NDPA) < 0.003 < 0.003 N-Nitrosomethylethylamine (NMEA) < 0.003 < 0.003 **Organic Compound** Phenols Blank Test Max Allowed µg/L µg/L ES2107842 !External Lab Report No. ES2107842 2 4 5-trichlorophenol <1.0 <1.0 2 4 6-trichlorophenol <1.0 <1.0 20 µg/L <1.0 <1.0 200 µg/L 2 4-dichlorophenol 2 4-dimethylphenol <1.0 <1.0 2 6-dichlorophenol <1.0 <1.0 2-chlorophenol <1.0 <1.0 300 µg/L 2-nitrophenol <1.0 <1.0 4-chloro-3-methylphenol <1.0 <1.0 m+p cresol <2.0 <2.0 o-cresol <1.0 <1.0 pentachlorophenol <2.0 <2.0 9 µg/L phenol <1.0 <1.0

Tel: 1300 653 366 Fax: 1300 883 171

Email: producttesting@awgc.com.au

Internet: www.awqc.com.au

FINAL REPORT

Report ID : 311761

Blank	Test	Max Allowed
μg/L	µg/L	
ES2107842	ES2107842	
<10	<10	10 µg/L
<2	<2	
<2	<2	
<2	<2	
<2	<2	
<2	<2	
<2	<2	
Blank	Test	Max Allowed
µg/L	µg/L	
ES2107842	ES2107842	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.005	<0.005	0.01 µg/L
<0.005	<0.005	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.02	<0.02	
<0.005	<0.005	
<0.02	<0.02	
<0.02	<0.02	
	Blank μg/L ES2107842 <10 <2 <2 <2 <2 <2 <2 <2 Blank μg/L ES2107842 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.005 <0.005 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	BlankTest $\mu g/L$ $\mu g/L$ ES2107842ES2107842<10

Internet: www.awqc.com.au

FINAL REPORT

Report ID : 311761

Organic Compound

Email: producttesting@awqc.com.au

Volatile Organic Compounds GCMS	Blank	Test	Max Allowed
	µg/L	μg/L	
1 1 1 2-Tetrachloroethane	<1	<1	
1 1 1-Trichloroethane	<1	<1	
1 1 2 2-Tetrachloroethane	<1	<1	
1 1 2-Trichloroethane	<1	<1	
1 1-Dichloropropene	<1	<1	
1 2 3-Trichlorobenzene	<1	<1	
1 2 3-Trichloropropane	<1	<1	
1 2 4-Trichlorobenzene	<1	<1	
1 2 4-Trimethylbenzene	<1	<1	
1 2-Dibromo-3-chloropropane	<1	<1	1 μg/L
1 2-Dibromoethane	<1	<1	1 μg/L
1 2-Dichlorobenzene	<1	<1	1500 μg/L
1 2-Dichloroethane	<1	<1	3 µg/L
1 2-Dichloropropane	<1	<1	
1 3 5-Trimethylbenzene	<1	<1	
1 3-Dichlorobenzene	<1	<1	
1 3-Dichloropropane	<1	<1	
1 4-Dichlorobenzene	<1	<1	40 µg/L
1,1-Dichloroethane	<1	<1	
1,1-Dichloroethene	<1	<1	30 µg/L
2,2-Dichloropropane	<1	<1	
2-Chlorotoluene	<1	<1	
4-Chlorotoluene	<1	<1	
4-Isopropyltoluene	<1	<1	
Benzene	<1	<1	1 µg/L
Bromobenzene	<1	<1	
Bromochloromethane	<1	<1	
Bromodichloromethane	26	25	60 µg/L
Bromoform	10	10	100 µg/L
Bromomethane	<4	<4	
Carbon tetrachloride	<1	<1	3 µg/L
Chlorobenzene	<1	<1	300 µg/L
Chloroethane	<4	<4	
Chloroform	17	19	400 µg/L
Chloromethane	<4	<4	
cis-1 3-Dichloropropene	<1	<1	
cis-1,2-Dichloroethene	<1	<1	
Dibromochloromethane	33	31	150 µg/L
Dibromomethane	<1	<1	
Dichlorodifluoromethane	<1	<1	
	<4	<4	4 µg/L
Ethylbenzene	<1	<1	300 µg/L
Hexachlorobutadiene	<0.7	<0.7	0.7 µg/L
Isopropylbenzene	<1	<1	
m+p-Xylenes - Iotal	<2	<2	

Email: producttesting@awgc.com.au

Internet: www.awgc.com.au

FINAL REPORT

311761 **Report ID :**

Organic Compound

Volatile Organic Compounds GCMS	Blank	Test	Max Allowed
	µg/L	μg/L	
Naphthalene	<1	<1	
n-Butylbenzene	<1	<1	
n-Propylbenzene	<1	<1	
o-Xylene	<1	<1	
sec-Butylbenzene	<1	<1	
Styrene	<1	<1	30 µg/L
tert-Butylbenzene	<1	<1	
Tetrachloroethene	<1	<1	50 µg/L
Toluene	<1	<1	800 µg/L
Total 1 2-dichloroethene	<2	<2	60 µg/L
Total 1 3-dichloropropene	<2	<2	20 µg/L
Total Trichlorobenzene	<2	<2	30 µg/L
Total Xylene	<3	<3	600 µg/L
trans-1 3-Dichloropropene	<1	<1	
trans-1,2-Dichloroethene	<1	<1	
Trichloroethene	<1	<1	
Trichlorofluoromethane	<1	<1	
Trihalomethanes - Total	86	85	250 µg/L
Vinyl chloride	<0.3	<0.3	0.3 µg/L
Evaluation The product par	and the requirements of cl	auso 6.8 when tested at an exp	$c_{\rm curro}$ of 15000 mm ²

Evaluation

The product passed the requirements of clause 6.8 when tested at an exposure of 15000 mm² per Litre.

Number of Samples

1.

Test Comment

Subcontracted testing conducted by ALS, Environmental Division, NATA accreditation no. 825 site no. 10911 and ALS Scoresby, NATA accreditation no. 992, site no. 989

Qiong Huang

APPROVED SIGNATORY

